Abstract

Cell-penetrating peptides (CPPs) can be potentially used in targeted delivery of therapeutic cargoes. However, their conformation in solution is poorly understood. We employed molecular dynamics simulations to probe the structural fluctuations of an anionic CPP, pH Low Insertion Peptide (pHLIP), in solution to determine the effects of modifications to selected residues on the structure of pHLIP. Two types of modifications were tested: (1) protonation of aspartic acid residues and (2) point mutations known to affect the acid sensitivity of pHLIP. pHLIP samples conformations ranging from coil to helix to sheet, and modifications to pHLIP lead to subtle shifts in the balance between these conformations. In some instances, pHLIP is as likely to form a helical conformation as it is to form an unstructured coil. Understanding the behavior of pHLIP in solution is necessary for determining optimal conditions for administration of pHLIP and design of promising pHLIP variants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.