Abstract

NMR spectroscopy has revealed pH-dependent structural changes in the highly conserved catalytic domain 5 of a bacterial group II intron. Two adenines with pKa values close to neutral pH were identified in the catalytic triad and the bulge. Protonation of the adenine opposite to the catalytic triad is stabilized within a G(syn)–AH+(anti) base pair. The pH-dependent anti-to-syn flipping of this G in the catalytic triad modulates the known interaction with the linker region between domains 2 and 3 (J23) and simultaneously the binding of the catalytic Mg2+ ion to its backbone. Hence, this here identified shifted pKa value controls the conformational change between the two steps of splicing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.