Abstract

Protonation and Zn(II) complexation of N-substituted amino acids, valine (H 2 L1) and glycylglycine (H 2 L2), with 4-amino-1,6-dihydro-1-methyl-5-nitroso-6-oxopyrimidin-2-yl as substituent, were studied by potentiometric and UV–Vis measurements. Bianions L1 and L2 suffer three protonation steps in aqueous medium corresponding to the amide and carboxylate groups of the amino acidic moiety, and the nitrogen atom of the nitroso group of the pyrimidine fragment. Both ligands form mononuclear Zn(II) complexes in aqueous solutions. The binding donor groups are the nitroso and/or the oxo groups of the pyrimidinic moiety or the carboxylate group, depending on whether the ligands are neutral or anionic, respectively. Weak metal-to-ligand interactions were observed independently of the functionality used by the corresponding ligand on bonding to Zn(II). The reaction of ZnCl 2 with the monodeprotonated ligands (1:1) yields a polynuclear 2D {[Zn(H L1) 2] · 2H 2O} n and a mononuclear [Zn(H L2) 2(H 2O) 4] complexes, showing the influence of the susbtituent on the amino acids fragment as well as the versatility of this class of compounds when acting as ligands.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.