Abstract

Biological [Fe-S] clusters are increasingly recognized to undergo proton-coupled electron transfer (PCET), but the site of protonation, mechanism, and role for PCET remains largely unknown. Here we explore this reactivity with synthetic model clusters. Protonation of the arylthiolate-ligated [4Fe-4S] cluster [Fe4 S4 (SAr)4 ](2-) (1, SAr=S-2,4-6-(iPr)3 C6 H2 ) leads to thiol dissociation, reversibly forming [Fe4 S4 (SAr)3 L](1-) (2) and ArSH (L=solvent, and/or conjugate base). Solutions of 2+ArSH react with the nitroxyl radical TEMPO to give [Fe4 S4 (SAr)4 ](1-) (1ox ) and TEMPOH. This reaction involves PCET coupled to thiolate association and may proceed via the unobserved protonated cluster [Fe4 S4 (SAr)3 (HSAr)](1-) (1-H). Similar reactions with this and related clusters proceed comparably. An understanding of the PCET thermochemistry of this cluster system has been developed, encompassing three different redox levels and two protonation states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.