Abstract

PANI materials usually contain a certain amount of insulating components, e.g., imine (N-) and amine (-NH-) groups, limiting the electrochemical redox of PANI. Herein, we proposed a simple protonation strategy to activate the redox couples of the PANI cathode for aqueous Zn batteries, during which the insulating N- groups are partially converted to the conductive emeraldine salt (polarons -NH+-), endowing PANI more active sites and enhanced conductivity. The A-PANI electrode realizes efficient transitions of leucoemeraldine/emeraldine and emeraldine/pernigraniline, achieving a high discharge capacity of 183 mA h g-1, long life span, and good energy density of 178 W h kg-1 at the power density of 680 W kg-1. These values are significantly superior to those of the original PANI electrode, indicating the high efficiency of the proposed strategy. This simple protonation method could be applicable for many electrochemical devices, such as supercapacitors, sensors, and batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.