Abstract
The ESI-formed protonated 2′-deoxycytidine, cytidine, cytarabine, and gemcitabine have been probed using infrared multiphoton dissociation (IRMPD) spectroscopy performed in the 900–2000cm−1 region at CLIO, the Orsay Free Electron Laser facility, and in the 2800–3800cm−1 region using a YAG-laser coupled to a table-top optical parametric oscillator/amplifier (OPO/OPA). The IRMPD spectra are compared of the protonated nucleosides with the IR spectra of their B3LYP/6-311++G(d,p)-optimized isomeric forms. The stability at room temperature of some conformers has been investigated by means of ab initio molecular dynamics simulations. The IRMPD spectra are consistent with the formation in the ESI source of both the N3- and the O2-protonated nucleosides. The most favoured members of both families are characterized by the pyrimidine base oriented anti to the furanose moiety. Concerning the O2-protonated nucleosides, IRMPD spectra and thermochemical considerations support the predominant formation of the structures with the proton oriented up relative to the furanose moiety.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.