Abstract
AbstractThis research aims at optimizing the effects of processing conditions, salts, natural organic materials, and water matrices quality on the effectiveness of the Fe(II)/K2S2O8/hydroxylamine process in the degradation of pararosaniline. Assisting the Fe(II)/KPS (potassium persulfate) treatment with protonated hydroxylamine (H3NOH+) increases the degradation rate of pararosaniline by more than 100%. Radical scavenger experiments show that the SO4●− radical dominates pararosaniline degradation in the Fe(II)/KPS system, whereas ●OH is the dominant reactive species in the presence of H3NOH+. The disparity in pararosaniline removal effectiveness upon the Fe(II)/KPS/H3NOH+ and Fe(II)/KPS systems gets more significant with increasing reactants doses (i.e., H3NOH+, H2O2, Fe(II)) and solution pH (2–7). Interestingly, H3NOH+ increased the working pH to 6 instead of pH 4 for the Fe(II)/KPS process. Moreover, mineral anions such as Cl−, NO3−, NO2−, and SO4− (up to 10 × 10−3 m) do not affect the efficiency of the Fe(II)/KPS/H3NOH+ process. In contrast, acid humic decreases the performance of the process by ≈20%. In natural mineral water, treated wastewater, and river water samples, the Fe(II)/KPS/H3NOH+ process maintains higher degradation performance (≈95%), whereas the process efficiency is greatly amortized in seawater. The efficiency of the Fe(II)/KPS process was drastically decreased in the various water matrices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.