Abstract

Salts containing the monoprotonated ethylene carbonate species of were obtained by reacting it with the superacidic systems XF/MF5 (X=H, D; M=Sb, As). The salts in terms of [C3H5O3]+[SbF6]−, [C3H5O3]+[AsF6]− and [C3H4DO3]+[AsF6]− were characterized by low‐temperature infrared and Raman spectroscopy. In order to generate the diprotonated species of ethylene carbonate, an excess of Lewis acid was used. However, this only led to the formation of [C3H5O3]+[Sb2F11]−, which was characterized by a single‐crystal X‐ray structure analysis. Quantum chemical calculations on the B3LYP/aug‐cc‐PVTZ level of theory were carried out for the [C3H5O3]+ cation and the results were compared with the experimental data. A Natural Bond Orbital (NBO) analysis revealed sp2 hybridization of each atom belonging to the CO3 moiety, thus containing a remarkably delocalized 6π‐electron system. The delocalization is confirmed by a 13C NMR‐spectroscopic study of [C3H5O3]+[SbF6]−.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.