Abstract

The introduction of nitrogen to carbonyl groups is considered both challenging and highly desirable by those who work in the field of organic synthesis. In this study, a diphenylethylenediamine-derived catalyst demonstrating N-selectivity was designed using a quantum calculation for the nitroso aldol reaction. The reductive monoalkylation of (R,R)-(+)-1,2-diphenylethylenediamine afforded an organic chiral diamine catalyst in high yield. The expected reaction mechanism for the nitroso aldol reaction was determined, and the product and solvent conditions were optimized through quantum calculations. The calculation results revealed that the enantioselectivity is determined by the hydrogen bond between the alkyl substituent of the chiral diamine and the oxygen of the aromatic aldehyde on the ammonium moiety. The reaction was found to proceed optimally in the presence of 5 mol % catalyst at −10 °C in brine. Using these conditions, an eco-friendly nitroso aldol reaction was performed in which the organic catalyst and cyclohexanone formed enamine. Nitrosobenzene, activated by hydrogen bonding with an ammonium catalyst, was used to minimize the steric hindrance between the catalyst and the reactant, resulting in high enantioselectivity. A nitroso aldol product with high N-selectivity and enantioselectivity (98% ee) was obtained in 95% yield. The catalyst developed in this study provides a less expensive and more environmentally friendly alternative for the nitroso aldol reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.