Abstract

In proton therapy of posterior fossa tumors, at least partial inclusion of the brainstem in the target is necessary because of its proximity to the tumor and required margins. Additionally, the preferred beam geometry results in directing the field distal edge toward this critical structure, raising concerns for brainstem toxicity. Some treatment techniques place the beam's distal edge within the brainstem (dose-sparing techniques), and others avoid elevated linear energy transfer (LET) of the proton field by placing the distal edge beyond it (LET-sparing techniques). Hybrid approaches are also being used. We examine the dosimetric efficacy of these techniques, accounting for LET-dependent and dose-dependent variable relative biologic effectiveness (RBE) distributions. Six techniques were applied in ependymoma cases: (a) 3-field dose-sparing; (b) 3-field LET-sparing; (c) 2-field dose-sparing, wide angles; (d) 2-field LET-sparing, wide angles; (e) 2-field LET-sparing, steep angles; and (f) 2-field LET-sparing with feathered distal end. Monte Carlo calculated dose, LET, and RBE-weighted dose distributions were compared. Decreased LET values in the brainstem by LET-sparing techniques were accompanied by higher, not statistically significant, median dose: 53.6Gy(RBE), 53.4Gy(RBE), and 54.3Gy(RBE) for techniques (b), (d), and (e) versus 52.1Gy(RBE) for technique (a). Accounting for variable RBE distributions, the brainstem volume receiving at least 55Gy(RBE) increased from 72.5% for technique (a) to 80.3% for (b) (P<.01) and from 70.7% for technique (c) to 77.6% for (d) (P<.01). Less than 2%, but statistically significant, decrease in maximum variable RBE-weighted brainstem dose was observed for the LET-sparing techniques compared with the corresponding dose-sparing (P=.03 and .004). Extending the proton range beyond the brainstem to reduce LET results in clinically comparable maximum radiobiologic effective dose to this sensitive structure. However this method significantly increasing the brainstem volume receiving RBE-weighted dose higher than 55Gy(RBE) with possible consequences based on known dose-volume parameters for increased toxicity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call