Abstract
Polymers are a class of materials that are highly challenging to deal with using first-principles methods. Here, we present an application of machine-learned interatomic potentials to predict structural and dynamical properties of dry and hydrated perfluorinated ionomers. An improved active-learning algorithm using a small number of descriptors allows to efficiently construct an accurate and transferable model for this multielemental amorphous polymer. Molecular dynamics simulations accelerated by the machine-learned potentials accurately reproduce the heterogeneous hydrophilic and hydrophobic domains formed in this material as well as proton and water diffusion coefficients under a variety of humidity conditions. Our results reveal pronounced contributions of Grotthuss chains consisting of two to three water molecules to the high proton mobility under strongly humidified conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.