Abstract

The recently proposed multilayer multiconfiguration time-dependent Hartree (ML-MCTDH) approach to evaluating reactive quantum dynamics is applied to two model condensed-phase proton transfer reactions. The models consist of a one-dimensional double-well "system" that is bilinearly coupled to a "bath" of harmonic oscillators parameterized to represent a condensed-phase environment. Numerically exact quantum-mechanical flux correlation functions and thermal rate constants are obtained for a broad range of temperatures and system-bath coupling strengths, thus demonstrating the efficacy of the ML-MCTDH approach. Particular attention is focused on the regime where low temperatures are combined with weak system-bath coupling. Under such conditions it is found that long propagation times are often required and that quantum coherence effects may prevent a rigorous determination of the rate constant.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call