Abstract
Proton transfer processes of 4-hydroxy-3-formyl benzoic acid (HFBA) have been studied in a number of different protic solvents by means of absorption, emission and nanosecond transient spectroscopy at room temperature and 77 K. Intermolecular interaction occurs in polar protic solvents only in presence of a base in the ground state whereas in the excited state, intermolecular complex formation and proton transfer occurs even in pure protic solvents. The dianion is detected in water, methanol, ethanol and TFE in presence of base. HFBA shows phosphorescence in pure ethanol at 77 K. The occurrence of phosphorescence is due to rupture of the intramolecular bond and rotation of the formyl group. We have calculated quantum yields of fluorescence and also estimated decay rates from nanosecond measurements. The energetics of the ground and excited state proton transfer in HFBA have been investigated at the AM1 level of approximation. The ground singlet is predicted to have a large activation barrier on the proton transfer path, while the barrier height is much lower on the corresponding excited singlet surface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.