Abstract

Tunneling splittings have been observed in the eigenstate-resolved electronic spectrum of the 2-hydroxypyridine/2-pyridone dimer in the gas phase. Deuterium substitution experiments show that these splittings are caused by a concerted double proton transfer reaction along the O-H...O and N...H-N hydrogen bonds that hold the dimer together, substitution of the weaker and longer N...H-N bond having the larger effect. Tunneling splittings calculated by the instanton method for the zero-point level of the ground state are in good agreement with experiment for all observed isotopomers, showing that the dynamics occurs in this state, rather than in the electronically excited state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.