Abstract

The ion-molecule chemistry of the astronomically relevant H(3)(+), N(2)H(+), and NH(4)(+) ions has been investigated in the weakly ionized cold plasmas formed in glow discharges of H(2) with small amounts of nitrogen. The concentrations of neutrals and ions were determined by means of mass spectrometry, and electron temperatures and densities were measured using Langmuir probes. A kinetic model was used for the interpretation of the results. The selection of experimental conditions allowed the generation of ion distributions with different relative weights of the mentioned protonated species and the model calculations showed that the observed ion distributions can be explained by the occurrence of a very efficient H(3)(+) → N(2)H(+) → NH(4)(+) proton transfer chain. The NH(4)(+) ion, which is dominant in most of the cases studied, is ultimately derived from the small amount of NH(3) produced at the reactor walls. NH(4)(+) tends to be preponderant in the ion distributions even for NH(3) density ratios as low as 1%. Due to the high proton affinity of ammonia, this molecule is readily transformed into NH(4)(+) upon collision with H(3)(+) or N(2)H(+). It is conjectured that these results can be extrapolated to most of the small molecules predominant in the interstellar medium, which also have proton affinities lower than that of NH(3). The results support the predictions of astrochemical models indicating that NH(4)(+) could be a preponderant ion in some warm environments like hot cores, where NH(3) molecules have desorbed from the grains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.