Abstract

The multibubble sonoluminescence (MBSL) emission intensity from aqueous solutions containing simple aliphatic organic acids (RCOOH) and bases (RNH2) and mixtures of the two types of solutes has been examined as a function of pH. In solutions containing either an organic acid or base, under pH conditions where the solutes are predominately in their ionized form (i.e., RCOO- and RNH3+), the MBSL intensity is identical with that obtained in pure water. Alternatively, under pH conditions where the solutes are in their un-ionized form the MBSL intensity is suppressed. However, in solute mixtures of RCOO- and RNH3+ in the pH range of 7 to 9, the MBSL intensity was significantly suppressed relative to that from water. To explain the results of the mixed solute system it has been postulated that when the bubble/solution interface experiences the extreme temperature conditions that accompany bubble collapse, proton transfer occurs between acid-base ion-pair complexes, [RCOO-...RNH3+], adsorbed at the bubble/solution interface. The neutral forms of the solutes then evaporate into the bubble during its expansion phase and through a complex series of events, over a number of bubble oscillations, reduce the core temperature of the collapsing bubble and hence the SL intensity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.