Abstract

The effect of hydroxide ions on proton transfer and H/D isotopic exchange of water molecules was examined at the surface of amorphous ice films at temperatures of 92-140 K. Excess hydroxide ions were provided onto a D(2)O-ice film by the hydrolysis of Na atoms, and H(2)O was adsorbed onto the surface for a submonolayer coverage. The H/D isotopic exchange between H(2)O and D(2)O molecules on the ice film surface was monitored as a function of reaction time and temperature by using the techniques of reactive ion scattering and low-energy sputtering. The result was compared with that obtained on a hydroxide-free ice film. At a temperature of 92 K, proton transfer occurred from water mostly to adjacent hydroxide ions. The proton transfer distance and the H/D exchange reaction rate increased with increase in temperature above 105 K. The H/D exchange reaction propagated to several water molecules on the surface at 100-120 K. Kinetic measurement in this temperature range deduced the Arrhenius activation energy for the reaction, E(a) = 9.6+/-2.0 kJ mol(-1). The study shows that hydroxide ions promote the H/D exchange reaction on the ice surface compared with that on a hydroxide-free ice surface, but the promotion effect is moderate and the H/D exchange occurs on a substantial energy barrier. It is suggested that the stabilization of hydroxide ions at the ice surface produces an energy barrier for the proton transfer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call