Abstract

Generation of dihydrogen from water splitting, also known as water reduction, is a key process to access a sustainable hydrogen economy for energy production and usage. The key step is the selective reduction of a protic hydrogen to an accessible and reactive hydride, which has proven difficult at a p-block element. Although frustrated Lewis pair (FLP) chemistry is well known for water activation by heterolytic H–OH bond cleavage, to the best of our knowledge, there has been only one case showing water reduction by metal-free FLP systems to date, in which silylene (SiII) was used as the Lewis base. This work reports the molecular design and synthesis of an ortho-phenylene linked bisborane-functionalized phosphine, which reacts with water stoichiometrically to generate H2 and phosphine oxide quantitatively under ambient conditions. Computational investigations revealed an unprecedented multi-centered electron relay mechanism offered by the molecular framework, shuttling a pair of electrons from hydroxide (OH−) in water to the separated proton through a borane-phosphonium-borane path. This simple molecular design and its water reduction mechanism opens new avenues for this main-group chemistry in their growing roles in chemical transformations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call