Abstract
In order to investigate the proton solvation state in protic ionic liquids (PILs), ten acid dissociation enthalpies and entropies of eight compounds were determined in ethylammonium nitrate (EAN). Regardless of the nature of the compound, 24 kJ mol-1 larger enthalpy and 65 J mol-1 K-1 larger entropy than those in water, respectively, were observed. These values were reasonably explained by the differences in the proton solvation structure in EAN and water. Namely, protons in EAN exist as HNO3 , having a higher reaction energy than that of H3 O+ in water, undergo entropic stabilization as a result of the less-structured solvation. As such, the entropic effect of the proton solvation structure on the acid-base property is possibly applicable to all PILs. In addition, based on these proton thermodynamics, enthalpy and entropy windows were proposed as a novel perspective for the characterization of solvents. Use of this concept enabled the visualization of similarities and differences between EAN and water.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.