Abstract

ABSTRACTOligomeric ionmer-grafted silica nanoparticles were synthesized via atom transfer radical polymerization (ATRP) and applied to dope Nafion to investigate proton-sweeping effect of these hybrid nanoparticles. Two types of vinyl monomers, sulfopropyl acrylate, potassium (SPA) and N,N’-methyl-(6-hexylcarbamatoethylmethacrylate) imidazolonium bromide (EMACI), were employed to construct the grafted ionmer chains. The ionmer-grafted silica particles present a thick polymer layer surrounding the SiO2 core according to TEM investigation. The DSC analysis shows that the grafted ionmer oligomers (DP < 10) exhibit a stronger ionic attractive interaction than the corresponding long chain counterparts. The other structural characterizations of the ionmer-grafted SiO2 nanoparticles also include FT-IR and EDX. The most interesting feature of the grafted ionmer shrub lies in its proton-conduction enhancing effect when combined with Nafion® polymer. A series of such composite membranes were prepared through dispersing the ionmer-grafted SiO2 nanoparticles in Nafion solution and followed by casting. The grafted copolymer (SPA-co-EMACI) demonstrated a greater promoting effect on proton conduction than its homopolymer counterparts of either (SPA) or (EMACI) in the matrix of Nafion. This outcome could be attributed to the adjacent proton-sweeping effect of the pendant imidazolonium group.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.