Abstract

Here, we show the usefulness of a strong base, 1,8-bis(dimethyl-amino)naphthalene (DMAN; proton sponge), as a novel matrix for MALDI-TOF/MS analysis of anions. Several strong and weakly acidic low-molecular-weight analytes (fatty acids, amino acids, fatty acid-amino acid conjugates, plant and animal hormones, vitamins, and short peptides) were measured at physiologically relevant concentrations. Clear negative-mode MALDI-TOF/MS spectra of all analytes using DMAN as the matrix show only deprotonated analyte signals at a low picomole/femtomole limit-of-detection. Moreover, the spectra were totally devoid of any matrix-related signals. Standard calibration curves gave good linearity over the entire picomole range: over two concentration orders in most cases and over three orders for peptides. Using this method, the crude regurgitate of the tobacco hornworm caterpillars (Manduca sexta, Lepidoptera, Sphingidae) was analyzed. As many as 11 different components were identified from a single spot, including 16:0, 18:2, 18:3, and 21:0 free acids and 5:0-Glu, 6:0-Glu, 18:2-Glu, 18:3-Glu, 16:0-Glu, and 16:3-Glu fatty acid-amino acid conjugates (FACs) in complete qualitative agreement with previously reported anion exchange-HPLC analyses. The identity of these components was confirmed by negative ion collision-induced dissociation (CID) MS2 spectra.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.