Abstract

Previous studies have shown that proton magnetic resonance spectroscopy (MRS) is useful in predicting neurologic prognosis in children with traumatic brain injury (TBI). Reductions in N-acetyl derived metabolites and presence of lactate have been predictive of poor outcomes. We examined another spectroscopy metabolite, myoinositol (mI), to determine whether it is altered after TBI. Found primarily in astrocytes, mI functions as an osmolyte and is involved in hormone response pathways and protein-kinase C activation. Myoinositol is elevated in the newborn brain and is increased in a variety of diseases. We studied 38 children (mean age 11 y; range 1.6-17 y) with TBI using quantitative short echo time occipital gray and parietal white matter proton MRS at a mean of 7 d (range 1-17 d) after injury. We found that occipital gray matter mI levels were increased in children with TBI (4.30 +/- 0.73) compared with controls (3.53 +/- 0.48; p = 0.003). We also found that patients with poor outcomes 6-12 mo after injury had higher mI levels (4.78 +/- 0.68) than patients with good outcomes (4.15 +/- 0.69; p < 0.05). Myoinositol is elevated after pediatric TBI and is associated with a poor neurologic outcome. The reasons for its elevation remain unclear but may be due to astrogliosis or to a disturbance in osmotic function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.