Abstract
AbstractAt present, aqueous rechargeable Zn–MnO2 batteries have attracted widespread attention as green potential application for renewable energy storage devices. MnO2 cathode has great potential for application, but its proton reaction results in side reactions of cathode, electrolyte consumption, and dramatic pH value changes, suffering from capacity degradation. To address the issues caused by proton deficit, a proton–limited domain strategy is proposed by integrating solid acids (Sulfonic acid type polystyrene–divinylbenzene, SATP) with proton exchange reactions into MnO2. SATP can act as a new proton source increasing the amount of H+ and reducing the generation of zinc hydroxide sulfate, by–product of proton at the cathode interface, via proton exchange reactions of ‐HSO3– group. As a result, Zn–MnO2/SATP battery delivered with excellent rate performance (218.4 mAh g–1 at 2 A g–1) and high cycling stability (the retained capacity of 115.8 mAh g–1 after 500 cycles at a current density of 1 A g–1. This work provides an innovative strategy for high performance aqueous Zn–MnO2 batteries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.