Abstract

Aqueous zinc-ion batteries (AZIB) have several advantages such as low cost, large theoretical capacity and good safety. However, the development of polyaniline (PANI) cathode materials has been limited by slow diffusion kinetics. Herein, proton-self-doped polyaniline@carbon cloth (CC) (PANI@CC) was prepared via in-situ polymerization, where polyaniline was deposited on an activated carbon cloth. The PANI@CC cathode exhibits a high specific capacity of 234.3 mA h g−1 at 0.5 A g−1, and excellent rate performance, delivering a capacity of 143 mA h g−1 at 10 A g−1. Furthermore, the reversible redox conversion during the charge–discharge process was studied using ex-situ X-ray photoelectron spectroscopy (XPS) and ex-situ Raman spectra. The results show that the excellent performance of the PANI@CC battery can be attributed to the formation of a conductive network between the carbon cloth and polyaniline. Also, a mixing mechanism involving insertion/extraction of Zn2+/H+ and a double-ion process is proposed. PANI@CC electrode is a novel idea for developing high-performance batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.