Abstract

The proton transport processes in the upper part of the descending limb of the long-looped nephron (LDLu) from hamsters were studied using a fluorescent dye, 2',7'-bis(carboxyethyl)carboxyfluorescein (BCECF) in microperfused single nephron preparations. Intracellular pH (pHi), as assessed by the measurement of the fluorescence of BCECF trapped in the cytoplasm, was 7.23 +/- 0.05 (n = 18) under nominally HCO3--free conditions. Ouabain, when added to the bath, decreased pHi by 0.22 units. After an NH4Cl prepulse, the initial proton extrusion rate was 1.23 +/- 0.26 (n = 9) pH units/min, and was retarded in the presence of 1 mM amiloride either in the bath or in the lumen. pHi failed to recover when Na+ was eliminated from ambient solutions. These observations suggest that Na+/H+ antiporters exist both in the apical and basolateral cell membranes. By measuring tubular fluid pH (pHt) under stopped flow conditions, we examined whether the hamster LDLu has the capacity to generate and maintain a transmural H+ gradient. After the tubular outflow was obstructed, the luminal fluid was rapidly acidified, reaching a steady-state pH of 6.84 +/- 0.09 (n = 7). The steady-state pH was influenced by bath pH. Tubular fluid acidification was not observed in the absence of Na+ and was prevented by ouabain. We conclude that the hamster LDLu has the capability to generate and maintain a transmural proton gradient by proton secretion via a luminal Na+/H+ antiporter which is secondarily driven by the Na+-K+ ATPase in the basolateral membrane.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.