Abstract

The general formalism of nucleon recoil polarization in the (${\vec e},e'{\vec N}N$) reaction is given. Numerical predictions are presented for the components of the outgoing proton polarization and of the polarization transfer coefficient in the specific case of the exclusive $^{16}$O(${\vec e},e'{\vec p}p$)$^{14}$C knockout reaction leading to discrete states in the residual nucleus. Reaction calculations are performed in a direct knockout framework where final-state interactions and one-body and two-body currents are included. The two-nucleon overlap integrals are obtained from a calculation of the two-proton spectral function of $^{16}$O where long-range and short-range correlations are consistently included. The comparison of results obtained in different kinematics confirms that resolution of different final states in the $^{16}$O(${\vec e},e'{\vec p}p$)$^{14}$C reaction may act as a filter to disentangle and separately investigate the reaction processes due to short-range correlations and two-body currents and indicates that measurements of the components of the outgoing proton polarization may offer good opportunities to study short-range correlations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.