Abstract

Upon exposure of human red blood cells to hypertonic sucrose, the fluorescence of the potentiometric indicator 3,3'-dipropylthiadicarbocyanine iodide, denoted diS-C3(5), displays a biphasic time course indicating the rapid development of an inside-positive transmembrane voltage, followed by a slow DIDS (4,4'-diisothiocyano-2,2'-disulfonic acid stilbene)-sensitive decline of the voltage. In addition to monitoring membrane potential, proton (or hydroxide) fluxes were measured by a pH stat method, cell volume was monitored by light scattering, and cell electrolytes were measured directly when red cells were shrunken either with hypertonic NaCl or sucrose. Shrinkage by sucrose induced an initial proton efflux (or OH- influx) of 5.5 mu eq/g Hb.min and a Cl shift of 21-31 mu eq/g Hb in 15 min. Upon shrinkage with hypertonic NaCl, the cells are initially close to Donnan equilibrium and exhibit no detectable shift of Cl or protons. Experiments with the carbonic anhydrase inhibitor ethoxzolamide demonstrate that for red cell suspensions exposed to air and shrunken with sucrose, proton fluxes mediated by the Jacobs-Stewart cycle contribute to dissipation of the increased outward Cl concentration gradient. With maximally inhibitory concentrations of ethoxzolamide, a residual proton efflux of 2 mu eq/g Hb.min is insensitive to manipulation of the membrane potential with valinomycin, but is completely inhibited by DIDS. The ethoxzolamide-insensitive apparent proton efflux may be driven against the electrochemical gradient, and is thus consistent with HCl cotransport (or Cl/OH exchange). The data are consistent with predictions of equations describing nonideal osmotic and ionic equilibria of human red blood cells. Thus osmotic equilibration after shrinkage of human red blood cells by hypertonic sucrose occurs in two time-resolved steps: rapid equilibration of water followed by slower equilibration of chloride and protons (or hydroxide). Under our experimental conditions, about two-thirds of the osmotically induced apparent proton efflux is mediated by the Jacobs-Stewart cycle, with the remainder being consistent with mediation via DIDS-sensitive HCl cotransport (or Cl/OH exchange).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.