Abstract

In a search for new type pH sensing fluorophores, the possibility of using the proton "off-on" switch behaviour of naphthalimide derivatives for optical pH sensor preparation has been explored. A new compound, N-allyl-4-(4[prime or minute]-methyl-piperazinyl)-1,8-naphthalimide (AMPN), was synthesized. The enhancement of fluorescence of AMPN with the increase of hydrogen ion concentration is based on arresting photo-induced electron transfer to the naphthalimide fluorophore from aliphatic amine group after its protonation. The Stokes Shift of the proposed type of pH sensing fluorophore is significantly larger than that of the fluorescein counterparts. To avoid the leakage of the fluorophore, AMPN was photo-copolymerized with 2-hydroxyethyl methacrylate and acrylamide on the glass surface. The fluorescence intensity of membrane contacted with a pH 3.50 buffer is 4.7 times of that for pH 12.00 buffer solutions. The proposed pH sensor is not susceptible to ionic strength and shows good selectivity, repeatability and short response time. The membrane shows a good stability with a lifetime over two months. The sensor can be used for the determination of pH in the range of pH 4.5-9.0, without interference of most commonly co-existing inorganic ions and some organic species. The sensor has been applied to the analysis of urine samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.