Abstract

We calculate the proton-nucleus total reaction cross sections at different energies of incident protons within the optical limit approximation of the Glauber theory. The isospin effect has been taken into account. The nucleon distribution is obtained in the framework of macroscopic nuclear models in a way depending on the equation of state of uniform nuclear matter near the saturation density. We find that at an energy of order 40 MeV, the reaction cross section calculated for neutron- rich isotopes significantly increases as the parameter L characterizing the density dependence of the symmetry energy increases, while at energies of order 300 and 800 MeV, it is almost independent of L. This is a feature of the optical limit Glauber theory in which an exponential dependence of the reaction cross section on the neutron skin thickness remains when the total proton-neutron cross section is small enough.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.