Abstract
The partitioning of water sorption isotherms into different zones, according to the strength of water interactions with solids has very important practical applications. However, the dynamic properties of water play an important role in complementing the information provided by water sorption isotherms. One of the most successful techniques used to prove the dynamic behavior of water in foods systems is pulsed NMR. The aim of this study was to apply the concept of proton mobility in order to better define the water-related dynamic aspects of freeze-dried fruits. Different water mobility populations were defined through 1H NMR transversal relaxation times, obtained after the application of several pulses sequences. The water content limits at which proton populations with different mobility appeared, allowed a more complete and precise description of water behavior at the different sorption stages than the parameters obtained by the application of sorption mathematical models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.