Abstract

We have determined the relative magnitudes of the intra- and intermolecular contributions to the nuclear magnetic relaxation rates of the methylene protons of the hydrocarbon chains in phosphatidylcholine bilayer vesicles over a range of temperatures and at two NMR frequencies (100 and 220 MHz). These measurements have been made by the isotopic dilution method using deuterated phosphatidylcholines containing fully deuterated hydrocarbon chains. The results showed that both the methylene linewidths and the spin-lattice relaxation rates are dominated by intramolecular dipolar interactions. Both the intra- and intermolecular contributions to the spin-lattice relaxation rate were found to decrease with increasing temperature and to exhibit a frequency dependence, the rates being higher at the lower NMR frequency in both cases. These observations indicate that both intra- and intermolecular dipolar interactions are modulated by anisotropic motions. In the case of the intermolecular dipolar fields, it is proposed that they are modulated both by the rapid rotational isomerization of the hydrocarbon chains as well as by lateral diffusion of the lipid molecules. That the hydrocarbon chain motion must be fairly effective in effecting efficient spin-lattice relaxation is evident from the negligible intramolecular interchain contribution to the relaxation found in the present work.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call