Abstract

Up to half of the cellular energy gets lost owing to membrane proton leakage. The permeability of lipid bilayers to protons is by several orders of magnitude higher than to other cations, which implies efficient proton-specific passages. The nature of these passages remains obscure. By combining experimental measurements of proton flow across phosphatidylcholine vesicles, steered molecular dynamics (MD) simulations of phosphatidylcholine bilayers and kinetic modelling, we have analyzed whether protons could pass between opposite phospholipid molecules when they sporadically converge. The MD simulations showed that each time, when the phosphorus atoms of the two phosphatidylcholine molecules got closer than 1.6 nm, the eight oxygen atoms of their ester linkages could form a transmembrane ‘oxygen passage’ along which several water molecules aligned into a water wire. Proton permeability along such water wires would be limited by rearrangement of oxygen atoms, which could explain the experimentally shown independence of the proton permeability of pH, H2O/D2O substitution, and membrane dipole potential. We suggest that protons can cross lipid bilayers by moving along short, self-sustaining water wires supported by oxygen atoms of lipid ester linkages.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.