Abstract

A new paradigm for the high- and low-spin forms of the S2 state of nature's water-oxidizing complex in Photosystem II is found. Broken symmetry density functional theory calculations combined with Heisenberg-Dirac-van Vleck spin ladder calculations show that an open cubane form of the water-oxidizing complex changes from a low-spin, S = 1/2, to a high-spin, S = 5/2, form on protonation of the bridging O4 oxo. We show that such models are fully compatible with structural determinations of the S2 state by X-ray free-electron laser crystallography and extended X-ray absorption fine structure and provide a clear rationale for the effect of various treatments on the relative populations of each form observed experimentally in electron paramagnetic resonance studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.