Abstract
The interaction of both the particle and photon component of the solar wind with the lunar surface material is expected to produce diverse chemical reactions. Experimental evidence for proton-induced OH formation was obtained by bombarding a glass, chemically similar in composition to common silicate minerals, with high-energy protons. The concentration of OH, before and after irradiation, was determined by infrared absorption measurements. The OH formation rate was greatest at the start of the bombardment and decreased with increasing dose. The maximum proton to OH conversion rate, at the start of the irradiation, is at least 5 or 10% and may be as high as 100%. Using this result, together with estimates of the lunar age and recent solar proton flux data, we were able to make very rough calculations of the minimum proton-induced OH content in the lunar surface. If mixing or churning is not important, the upper centimeter could contain 4×1016 OH per cm3. When protons below 40 Mev and the higher conversion rate are included in the computation, the estimated OH concentrations could increase by a factor of 10 or more. If surface mixing or churning has occurred, they should be divided by an average churning depth.
Submitted Version
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.