Abstract

The fluorescence quenching of acridine orange has been used to study the formation and dissipation of acid interior pH gradients in brush-border membrane vesicles from rabbit renal cortex. Acidic interior pH gradients were produced by 1) outwardly directed gradients of Na+ or K+, and 2) the addition of vesicles equilibrated at pH 6.0 to 7.5 buffer. The rate of pH gradient dissipation was stimulated 6.3-fold by the replacement of tetramethylammonium gluconate by tetramethylammonium chloride. A further increase, of 2-fold, was seen upon the addition of carbonyl cyanide-m-chlorophenylhydrazine, demonstrating the existence of a Cl- conductance pathway. In the presence of valinomycin, the replacement of tetramethylammonium gluconate by K gluconate increased the rate of delta pH dissipation by 11-fold, demonstrating the existence of a conductive pathway for protons. This pathway for protons was also shown by the formation of an acidic interior space by an outwardly directed K gradient in the presence of valinomycin. The parallel conductive pathways for H+ and Cl- may dissipate pH and chloride gradients across the luminal membrane of the proximal tubule.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.