Abstract

To investigate the transport mechanism of valproic acid across the human placenta, we used human placental brush-border membrane vesicles and compared them with that of lactic acid. Transport of [3H]valproic acid and [14C]lactic acid was measured by using human placental brush-border membrane vesicles. The uptakes of [3H]valproic acid and [14C]lactic acid into brush-border membrane vesicles were greatly stimulated at acidic extravesicular pH. The uptakes of [3H]valproic acid and [14C]lactic acid were inhibited by various fatty acids, p-chloromercuribenzene sulfonate, alpha-cyano-4-hydroxycinnamate, and FCCP. A kinetic analysis showed that it was saturable, with Michaelis constants (Kt) of 1.04 +/- 0.41 mM and 1.71 +/- 0.33 mM for [3H]valproic acid and [14C]lactic acid, respectively. Furthermore, lactic acid competitively inhibited [3H]valproic acid uptake and vice versa. These results suggest that the transport of valproic acid across the microvillous membrane of human placenta is mediated by a proton-linked transport system that also transports lactic acid. However, some inhibitors differentially inhibited the uptakes of [3H]valproic acid and [14C]lactic acid, suggesting that other transport systems may also contribute to the elevated fetal blood concentration of valproic acid in gravida.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.