Abstract

Using two-dimensional hybrid expanding box simulations we study the competition between the continuously driven parallel proton temperature anisotropy and fire hose instabilities in collisionless homogeneous plasmas. For a quasi-radial ambient magnetic field the expansion drives $T_{p\Vert }>T_{p\bot }$ and the system becomes eventually unstable with respect to the dominant parallel fire hose instability. This instability is generally unable to counteract the induced anisotropization and the system typically becomes unstable with respect to the oblique fire hose instability later on. The oblique instability efficiently reduces the anisotropy and the system rapidly stabilizes, while a significant part of the generated electromagnetic fluctuations is damped to protons. As long as the magnetic field is in the quasi-radial direction, this evolution repeats itself and the electromagnetic fluctuations accumulate. For a sufficiently oblique magnetic field the expansion drives $T_{p\bot }>T_{p\Vert }$ and brings the system to the stable region with respect to the fire hose instabilities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call