Abstract

In this article, we report a new amorphous-crystalline polymer blend system consisting of poly (4, 4′-diphenylether-5, 5′-bibenzimidazole) (OPBI) and poly (aminophosphonate ester) (PAPE) polymers, the membranes of which were fabricated using the solution blending route. A series of blend membranes at different ratios were prepared and systematically analysed for chemical interactions, morphological changes and their physico-chemical properties studied for use as proton exchange membrane. While FT-IR spectroscopy established the hydrogen bonding interactions between N–H of OPBI and phosphonate ester group of PAPE, X-ray diffraction studies revealed the development of crystallinity in the membrane matrix. Interestingly, the gradual induction of crystallinity in an amorphous OPBI matrix was found to influence the properties of the blend membranes favourably. For instance, the blend membrane containing 25 wt% PAPE in OPBI matrix displayed the maximum property enhancement in terms of storage modulus, glass transition temperature (Tg), phosphoric acid (PA) doping level (37 mol/OPBI repeat unit) and most importantly proton conductivity (0.135 S/cm at 180 °C) which is almost twice the value for pristine OPBI (0.05 S/cm at 180 °C) under identical conditions. Although improved properties were observed at other blend ratios as well, the studies ascertain that the membrane with 25 wt% PAPE was found to be the threshold ratio up to which properties increase and beyond which i.e. at >25 wt% PAPE, there is a decrement in properties like mechanical stability and proton conductivity. An important reason for this was attributed to the creation of a right balance of amorphous and crystalline domains and appropriate intra and inter-polymer hydrogen bonding interactions in the matrix of 75/25 (OPBI/PAPE) blend membrane.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call