Abstract

Copolymers of ethylene glycol vinyl glycidyl ether (VGE) and vinyl chloride (VC) have been obtained via radical copolymerization of VGE with VC at 70°C in the presence of the initiator azobisisobutyronitrile. By the sol–gel synthesis involving VGE–VC copolymers and carbofunctional organosilicon precursors, such as N,N'-bis(3-triethoxysilylpropyl)thiocarbamide (BTM) and 2-([triethoxysilylpropyl]amino)pyridine (TEAP), hybrid organic–inorganic membranes possessing proton conductivity after doping with orthophosphoric acid have been fabricated. The proton conductivity of the membranes in the temperature range of 30–80°C is characterized by the values of 3.52–4.88 × 10−3 S cm−1 for VGE–VC/ BTM/H3PO4 and 1.19–2.89 × 10−3 S cm−1 for VGE–VC/TEAP/H3PO4.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.