Abstract

NMR anisotropic parameters such as dipolar couplings and chemical shifts are central to structure and orientation determination of aligned membrane proteins and liquid crystals. Among the separated local field experiments, the proton evolved local field (PELF) scheme is particularly suitable to measure dynamically averaged dipolar couplings and give information on local molecular motions. However, the PELF experiment requires the acquisition of several 2D datasets at different mixing times to optimize the sensitivity for the complete range of dipolar couplings of the resonances in the spectrum. Here, we propose a new PELF experiment that takes the advantage of the Hadamard encoding (HE) to obtain higher sensitivity for a broad range of dipolar couplings using a single 2D experiment. The HE scheme is obtained by selecting the spin operators with phase switching of hard pulses. This approach enables one to detect four spin operators, simultaneously, which can be processed into two 2D spectra covering a broader range of dipolar couplings. The advantages of the new approach are illustrated for a U-(15)N NAL single crystal and the U-(15)N labeled single-pass membrane protein sarcolipin reconstituted in oriented lipid bicelles. The HE-PELF scheme can be implemented in other multidimensional experiments to speed up the characterization of the structure and dynamics of oriented membrane proteins and liquid crystalline samples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.