Abstract

AbstractEpidermal plus hypodermal peels from tulip peduncles produced bands of acidity on agar containing bromocresol purple. Peels from horizontally oriented peduncles gave rise to an acidity band which corresponded to the lower side of the peduncle. The band began 3–6 cm beneath the flower and extended basipetally within the region of gravitropic bending. No corresponding band appeared in an agar layer laid on the cortical surface exposed by peeling. Peduncles growing in the normal vertical position showed circumnutations with a period in the range of 4 h. The peels from these stalks produced one or two bands more acid than the remaining part of the peel. Since the acidity band in horizontally positioned stalks corresponds to the zone of faster growth causing gravitropic bending, we infer that the band(s) produced by vertical stalks also correspond to zones of differential growth involved in circumnutation. On the basis of a previous finding that tulip leaves give rise to an oscillating acidity pattern, we infer that vertical stalks also show such a pattern. This inference fits the model proposing the involvement of an internal oscillator in circumnutation. However, the ratio of the circumnutation period to the gravitropic lag phase in tulip peduncles is such as predicted by the gravitropic‐feedback model of circumnutation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call