Abstract

Basic mechanisms and ground-test data for radiation effects in solid-state imagers are reviewed, with a special emphasis on proton-induced effects on silicon charge-coupled devices (CCDs). For the proton fluxes encountered in the space environment, both transient ionization and displacement damage effects arise from single-particle interactions. In the former case, individual proton tracks will be seen; in the latter, dark-current spikes (or hot pixels) and trapping states that cause degradation in charge-transfer efficiency will be observed. Proton-induced displacement damage effects on dark current and charge transfer are considered in detail, and the practical implications for shielding, device hardening, and ground testing are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call