Abstract
The intrinsic flexoelectric effect observed in oxide materials often falls below the desired threshold for practical applications. In this work, we demonstrate proton doping in insulating rutile TiO2 crystal as an effective approach to significantly increase flexoelectricity by more than two orders of magnitude. We attribute the noteworthy enhancement of flexoelectricity to the dual impact of proton doping in oxide materials. First, proton doping serves to induce the presence of charge carriers, resulting in the generation of flexoelectric currents. Second, proton doping induces expansion and distortion of the lattice structure, leading to an amplified flexoelectric field when the crystal experiences a strain gradient. The formation of O–H bonding in TiO2 crystal provides another route to break centrosymmetry according to lattice distortion of the TiO2 lattice, resulting in a larger flexoelectric field. In addition, the introduction of proton doping in TiO2 single crystals leads to a substantial increase in photocurrent by effectively flattening the interfacial Schottky junction. This phenomenon results in a three-order of magnitude enhancement of the photocurrent. Our work broadens the horizon of study on dielectric materials through proton doping and may also provide an approach that enables the utilization of dielectric materials in energy conversion applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Applied Physics Letters
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.