Abstract
A robust sensitivity-enhanced 1H/ 14N MAS HMQC experiment is described for proton-detected 14N NMR of solids. The sensitivity enhancement is achieved by using dipolar recoupling for coherence transfer with a so-called n = 2 rotary resonance. Rotary resonance occurs when a cw rf field matches certain ratios with the sample spinning frequency, n = ω 1/ ω r . The theory of rotary resonance for chemical shift anisotropy, heteronuclear and homonuclear dipolar interactions is presented in the irreducible representation. It is shown that the n = 2 rotary resonance decouples the homonuclear dipolar interactions while recoupling the heteronuclear dipolar interaction for proton-detected 14N NMR. The dipolar recoupling, T 2 ′ lengthening, and 1H/ 14N HMQC experiment under the n = 2 rotary resonance are demonstrated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.