Abstract

Aphids house large populations of the gammaproteobacterial symbiont Buchnera aphidicola in specialized bacteriocyte cells. The combined biosynthetic capability of the holobiont (Acyrthosiphon pisum and Buchnera) is sufficient for biosynthesis of all twenty protein coding amino acids, including amino acids that animals alone cannot synthesize; and that are present at low concentrations in A. pisum's plant phloem sap diet. Collaborative holobiont amino acid biosynthesis depends on glutamine import into bacteriocytes, which serves as a nitrogen-rich amino donor for biosynthesis of other amino acids. Recently, we characterized A. pisum glutamine transporter 1 (ApGLNT1), a member of the amino acid/auxin permease family, as the dominant bacteriocyte plasma membrane glutamine transporter. Here we show ApGLNT1 to be structurally and functionally related to mammalian proton-dependent amino acid transporters (PATs 1–4). Using functional expression in Xenopus laevis oocytes, combined with two-electrode voltage clamp electrophysiology we demonstrate that ApGLNT1 is electrogenic and that glutamine induces large inward currents. ApGLNT1 glutamine induced currents are dependent on external glutamine concentration, proton (H+) gradient across the membrane, and membrane potential. Based on these transport properties, ApGLNT1-mediated glutamine uptake into A. pisum bacteriocytes can be regulated by changes in either proton gradients across the plasma membrane or membrane potential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.