Abstract

Studying the formation of transition metal hydride complexes via proton-coupled electron transfer is important for developing next-generation molecular catalysts for hydrogen evolution. We report herein the study of stepwise photoinduced reduction and protonation of [CoIICp(dppe)]+ (Cp = cyclopentadienyl, dppe = 1,2-bis(diphenylphosphino)ethane) to form the corresponding hydride complex [HCoIIICp(dppe)]+. Reaction intermediates were optically tracked using transient absorption spectroscopy, and a combination of experimental fitting and kinetic simulations was used to determine apparent rate constants for electron transfer and proton transfer with a range of acid sources. A linear free energy relationship is observed between measured apparent proton transfer rate constants and acid strength, but marked differences from previously electrochemically determined protonation rate constants are found. These deviations, which stem from ground-state reactivity present in photochemical experiments, highlight the challenges in comparing mechanistic studies using different techniques.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.