Abstract

The presence of water has a significant impact on the reduction of substrates by SmI2. The reactivity of the Sm(II)-water reducing system and the relationship between sequential or concerted electron-transfer, proton-transfer is not well understood. In this work, we demonstrate that the reduction of an arene by SmI2-water proceeds through an initial proton-coupled electron transfer. The use of thermochemical data available in the literature shows that upon coordination of water to Sm(II) in THF, significant weakening of the O-H bond occurs. The derived value of nearly 73 kcal/mol for the decrease in the bond dissociation energy of the O-H bond in the Sm(II)-water complex is the largest reported to date for low-valent reductants containing bound water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.