Abstract

Polymers with ionic conductivity are useful materials for ion exchange membranes, separators, and electrolytes in electrochemical cells. New ionomers are currently being sought to replace the ionomers, which contain fluorine and are harmful to environment and expensive. A new and promising ionomer is a sulfonated ethylene/styrene copolymer. A nearby alternating copolymer with styrene content of 47 mol % was polymerized with metallocene/MAO catalyst. Membranes were prepared by hot-pressing copolymer films with a glassfiber tissue. Phenyl rings in the copolymers were sulfonated with chlorosulfonic acid as a sulfonating agent. As the alternating structure of the copolymer, sulfonic groups were evenly distributed along the membranes. The membranes were characterized by determining water uptake, ion exchange capacity, proton conductivity, and mechanical properties. The studies revealed that the sulfonated copolymers have promising properties for proton-conducting applications. All membranes had good ion exchange capacity, ∼ 3.5 meq/g, and proton conductivity, over 50 mS/cm. Due to the high water uptake of the sulfonated copolymer, mechanical properties of the membranes were improved by using the glassfiber tissue as reinforcement. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.