Abstract

A novel polyelectrolyte complex (PEC) membrane for direct methanol fuel cells (DMFCs) was prepared by blending a cationic polyelectrolyte, chitosan (CS), with an anionic polyelectrolyte, acrylic acid-2-acrylamido-2-methylpropane sulfonic acid copolymer (P(AA-AMPS)). The presence of –NH 3 + species detected by X-ray photoelectron spectroscopy (XPS) revealed that an ionic cross-linked interpenetrating polymer network (IPN) was formed between the two polyelectrolyte polymers. Methanol permeability and proton conductivity were measured and compared with the Nafion ®117 membrane. The dual function of P(AA-AMPS) as both an ionic crosslinker and a proton conductor led to not only a notable reduction in methanol permeability but also an increase in proton conductivity. The CS/P(AA-AMPS) membrane with a P(AA-AMPS) content of 41 wt.% exhibited a methanol permeability ( P) of 2.41 × 10 −7 cm 2 s −1 which was fifteen times lower than that of the Nafion ®117 membrane, whereas its proton conductivity ( σ) was comparatively high (3.59 × 10 −2 S cm −1). In terms of the overall selectivity index ( β = σ/ P), the PEC membrane showed a remarkably higher selectivity than the Nafion ®117 membrane, and, furthermore, the overall selectivity index increased with the increase of P(AA-AMPS) content. The mechanism of proton transfer was tentatively discussed based on the activation energy of conductivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call