Abstract

Lithium fluoride crystals are used to assess proton-beam energy spectra. Proton irradiation induces laser-active color centers in the crystal, whose density correlates with the absorbed dose. The spatial distribution of photoluminescence emitted by these color centers is exploited to estimate the proton-beam energy spectrum using an analytical Bragg-curve model. This study integrates the effects of multiple Coulomb scattering (MCS) into the model. At high enough energies, MCS leads to proton leakage through the crystal faces with a reduction in absorbed dose along the crystal length. The model incorporates MCS using an empirical approach based on Monte Carlo simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.